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1 Some Remarks

These are notes taken when attending the three-week semiclassical analysis summer school
at Northwestern University, as part of SNAP (”Summer Northwestern Analysis Program”).
These notes comprise the series of lectures on Fourier analysis taught by Dr. Jared Wunsch.
Each section represents a lecture.

Any mistakes are my own. I’ve added in various clarifying remarks, additional background,
and extra details which may generate further errors. Shoot me an email if/when you catch
them!

2 An Introduction to the Fourier Transform on the

Schwartz Space

We will start with a rather “dry” description of the Fourier transform, as motivating it is
actually easier after describing its key properties. To start, we want to define a nice class of
functions, which we will call the Schwartz space, denoted S(Rn). Informally, these functions
are nice in the sense that they are both smooth, which all orders of derivatives decaying
faster than any polynomial. Formally, we say

ϕ ∈ S(Rn) ⇐⇒ ϕ ∈ C∞(Rn) and ∀α, β ∈ Nn sup
x
|xαDβϕ| = Cαβ <∞.

Here,

Dβ =
1

i|β|
∂β11 ∂

β2
2 · · · ∂βnn .

In particular, Dj = −i∂j. Equivalently,

ϕ ∈ S ⇐⇒ ∀α, β ∈ Nn Dβxαϕ ∈ L∞

⇐⇒ ∀k ∈ N
∑
|α|≤k

sup
x
| 〈x〉kDαϕ| <∞,

where 〈x〉 := (1 + x2)
1/2

. This is like a smoothed-out, strictly positive version of |x|. We
will call

‖ϕ‖k =
∑
|α|≤k

sup
x
| 〈x〉kDαϕ|.

Note that this is a countable family of semi-norms, with which one can endow S(Rn) with a
metric space topology (in fact, a Fréchet topology) via the metric

d(ϕ, ψ) =
∞∑
k=0

2−k
‖ϕ− ψ‖k

1 + ‖ϕ− ψ‖k
.

Thus, we can say that

ϕn → ϕ in S ⇐⇒ ‖ϕn − ϕ‖k → 0 ∀k.

Example:

e−x
2 ∈ S(Rn),

1

1 + x2
/∈ S(R).
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Proposition 2.1.

1. S(Rn) is complete

2. C∞c (Rn) ⊂ S(Rn) is dense

Note: S(Rn) ⊂ L1(Rn). To see this, note that

ϕ ∈ S =⇒ |ϕ| ≤ C 〈x〉−1−n ,

then integrate in polar coordinates. In particular, we write∫
|ϕ(x)| dx =

∫ (
〈x〉n+1 |ϕ(x)|

) 1

〈x〉n+1 dx,

then use the Schwartzness of ϕ on the first terms in parentheses and integrability of the
other term.

Now, we’ll define the Fourier transform for an L1 function (with the Schwartz space as
a subspace). There are many conventions for the multiple of 2π in front of the integral, but
we adopt the one with makes the Fourier transform unitary.

Definition 2.2. If f ∈ L1(Rn), we define the Fourier transform as

(Ff)(ξ) = f̂(ξ) := (2π)−n/2
∫
Rn

f(x)e−ixξ dx.

Note: The Fourier transform is a continuous operator from L1 to L∞.

Note that the Schwartz space is closed under application by xj and Dj. This leads to the
following proposition.

Proposition 2.3. If ϕ ∈ S(Rn), then

F(Djϕ)(ξ) = ξj(Fϕ)(ξ)

F(xjϕ)(ξ) = −Dj(Fϕ)(ξ).

We sometimes say that the Fourier transform intertwines differentiation and multiplica-
tion (by a polynomial). If we define the operator Mj by Mjf(x) = xjf(x), then the above
can be re-stated as

Proposition 2.4.

FDj = MjF
FMj = −DjF .

The proof of the first part is an straightforward application of integration by parts, after
using Fubini’s theorem to write our integral over Rn as an iterated integral, and the proof
of the second follows from the Leibniz integral rule.
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Proposition 2.5. F : S → S, and it’s continuous.

Proof. Roughly,
ξαDβFϕ(ξ) = F(Dβ(−x)βϕ)(ξ) ∈ L∞,

since
Dβ(−x)βϕ ∈ S ⊂ L1.

Continuity is similar, using the sequential characterization.

Let T = J ◦ F2, where Jf(x) = f(−x) is coordinate inversion.

Theorem 2.6. T : S → S is the identity operator.

Corollary 2.7. F−1 = J ◦ F , in particular, we have the Fourier inversion formula

f(x) = (2π)−n/2
∫
Rn

f̂(ξ)eixξ dξ.

(Proof of theorem). Due to time constraints, some of the proof will only be on R, but the
general proof is similar.

Step 1: TDj = DjT and TMj = MjT

Check that, for example,

TDj = JF2Dj = JFMjF = −JDjF2 = DjJF2 = DjT.

Step 2: Fix γ ∈ S strictly positive. For any ϕ ∈ S and y ∈ R, we can write, via Taylor’s
theorem,

ϕ(x) = ϕ(y)
γ(x)

γ(y)
+ (x− y)ry(x),

with ry ∈ C∞. Note that the first term agrees with ϕ at x = y, and it is in S. To see that
ry ∈ S, note that away from x = y, we can write

ry(x) =
ϕ(x)− ϕ(y)γ(x)

γ(y)

x− y
.

Away from x = y, 1
x−y ∈ L

∞, as are all of its derivatives, and ϕ, γ ∈ S, so the ry ∈ S. Thus,
we have written ϕ as a sum of two Schwartz functions, the first of which matches ϕ at x = y.
Applying T to ϕ and using the previous lemma, we get that

Tϕ(x) =
ϕ(y)

γ(y)
Tγ(x) + (x− y)Try(x),

and evaluating at x = y shows that

Tϕ(y) = ϕ(y)
Tγ(y)

γ(y)
=: ϕ(y)h(y).
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Hence, h exists so that for all ϕ ∈ S,

Tϕ(x) = h(x)ϕ(x).

Since ∂x commutes with T , we get that hϕ′ = h′ϕ + hϕ′, implying that h is constant. So,
Tϕ = cϕ, for some c ∈ C. The result now follows from the following proposition.

Proposition 2.8.
F(e−x

2/2) = e−ξ
2/2

Proof. If u = e−x
2/2, then

(D − iMx)u = 0.

Taking the Fourier transform yields the ODE

(M − i(−D))û = 0,

and so
û = û(0)e−ξ

2/2,

with

û(0) =
1√
2π

∫
R

e−x
2/2e−ix(0) dx = 1.

3 Interpretations of the Fourier Transform and an In-

troduction to Tempered Distributions

We will use somewhat non-standard notation and use (·, ·) to denote the real L2 inner
product, and 〈·, ·〉 to denote the sesquilinear inner product on L2 (this will become less
natural when we introduce distributional pairings, which typically use the latter notation).
One can readily use Fubini to compute that

(Fϕ, ψ) = (ϕ,Fψ),

and
〈Fϕ,Fψ〉 = (Fϕ,F−1ψ̄) = (ϕ, ψ̄) = 〈ϕ, ψ〉 .

Lemma 3.1. F extends from S ⊂ L2 (densely) to a continuous linear map F : L2 → L2,
and it is unitary.

To prove this, take an element of L2 and an approximating sequence. This sequence is
Cauchy in L2 and by the above work, the Fourier transform of the Cauchy sequence converges
in L2, which implies that it converges. Define this limit as the Fourier transform, which is
independent of choice of approximating sequence. The fact that F is unitary is called the
Plancheral theorem.

Now, we will discuss motivations of the Fourier transform.
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1. F exchanges information about smoothness and decay: For example, let f ∈ L1 de-
crease quickly at ∞ (i.e. xαf ∈ L1 for all α). Then,

(−D)α(Ff) = F(xαf) ∈ L∞(R) ∩ C(R) =⇒ Ff ∈ C∞.

Conversely, if Dαf ∈ L1 for all α, then

ξαFf ∈ L∞ =⇒ Ff = O(〈ξ〉−k) ∀k.

2. (A more physical interpretation) F decomposes “signals” into components with dif-
ferent frequencies: In the Fourier inversion formula, we can interpret eixξ as a plane
wave with amplitude f̂(ξ), where large ξ yields rapid oscillations. This allows us to
re-construct f via its frequencies. For example, say we have a violinist who plays a
note at a frequency λ. We will assume that the rise and fall of the tone is Gaussian.
For small positive ε, we will model this (interpret x as time) via

f(x) = e−εx
2/2eiλx.

So, this is a complex oscillation with frequency λ and envelope e−εx
2/2, decaying very

slowly. Then,
f̂(ξ) = ce−(ξ−λ)2/2ε.

This is a Gaussian centered at ξ = λ which is highly peaked and rapidly decaying
(small ε gives a narrow peak here, as opposed to a wide envelope for f). So, we get a
huge spike at one frequency, namely λ.

3. Solving PDEs: We have the nice property that FDα = ξαF . Suppose that p(ξ) is a
polynomial in n variables, say p(ξ) =

∑
|α|≤m

aαξ
α. We can think of the quantity

p(D) =
∑
|α|≤m

aαD
α,

which is a constant-coefficient differential operator. Then,

F(p(D)ϕ) = p(ξ)Fϕ.

This can turn PDE problems to, in a way, problems in real algebraic geometry. This is
a pretty easy problem to solve, provided the polynomial has no real zeros. For example,
let

∆ = −
∑
j

D2
j =

∑
j

∂2
j ,

and say we want to solve (I −∆)ϕ = ψ, where ϕ, ψ ∈ S. The above holds

⇐⇒ (1 + |ξ|2)ϕ̂ = ψ̂ ⇐⇒ ϕ̂ =
1

1 + |ξ|2
ψ̂ ⇐⇒ ϕ = F−1

(
1

1 + |ξ|2
Fψ
)
.

That is, there must exist a unique solution in S. We call the above a Fourier multiplier.
This allows us to define a functional calculus:

f(∆)ϕ = F−1f(−|ξ|2)Fϕ,

provided f is nice (e.g. bounded with bounded derivatives, or even with polynomial
growth).
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Next, we’ll begin distribution theory. The continuous dual space of S is called the space
of tempered distributions, denoted

S ′ = {u : S → C : u is linear and continuous},

where continuity is equivalent to the statement

∃k ∈ N ∃C ∈ R+ ∀ϕ ∈ S |u(ϕ)| ≤ C ‖ϕ‖k ,

where (as before)

‖ϕ‖k =
∑
|α|≤k

sup
x
〈x〉k |Dαϕ|.

The order of a distribution is the number of derivatives needed to ensure continuity. One
can, equivalently, use the sequential criterion:

u ∈ S ′ ⇐⇒ u : S → C is linear and u(ϕj)→ u(ϕ) whenever ϕj → ϕ in S.

There are more general notions of distribution, as the dual space of test functions, but
the topology is messy, and tempered distributions are more fundamental to the Fourier
transform. For this reason, we will not discuss them further.

Example: Suppose that f ∈ L1(Rn), and define

uf (ϕ) =

∫
fϕ dx.

This defines a tempered distribution, as

|uf (ϕ)| ≤ ‖f‖L1 ‖ϕ‖0 .

We often do away with the above notation and use the same symbol for a function and the
distribution that it induces. We could have also take f ∈ L1

loc with polynomial growth.

Example: Let µ be a finite, positive (or complex-valued) Borel measure. Then, it induces
a tempered distribution via the map

ϕ 7→
∫
ϕdµ,

with a similar estimate to the previous example. A particular example is the Dirac delta
distribution: δ(ϕ) = ϕ(0), which is induced by the Dirac measure:

δx(A) = χA(x) =

{
0 x /∈ A
1 x ∈ A

,

and we have that ∫
f dδx = f(x).
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We write the distributional pairing (u, ϕ) = u(ϕ) for u ∈ S ′ and ϕ ∈ S. This has many
conventions, such as a being a right action or using angled brackets. S ′ is endowed with the
weak∗ topology, meaning that

un → u in S ′ ⇐⇒ (un, ϕ)→ (u, ϕ) ∀ϕ ∈ S.

We can continuously extend many operations from S to S ′. We first consider the pairing
of two Schwartz functions. For example, for all ϕ, ψ ∈ S,

(ϕ′, ψ) = −(ϕ, ψ′)

via an integration by parts. This motivates the definition of the distributional derivative as

(u′, ϕ) = −(u, ϕ′)

for u ∈ S ′, ϕ ∈ S.

Exercise: Check that this defines an element of S ′ if u does.

Example: Let H be the Heaviside function. Then, H induces a distribution via acting by
integration:

(H,ϕ) =

∞∫
0

ϕ(x) dx.

Compute directly that

(H ′, ϕ) = −(H,ϕ′) = −
∞∫

0

ϕ′(x) dx = ϕ(0) = (δ, ϕ) =⇒ H ′ = δ.

We can similarly extend many other operations, such as multiplication by x, multipli-
cation by a function (smooth with polynomial growth in all derivatives), translation, and
scaling (ϕ 7→ ϕ(λ·)). We can also define the Fourier transform of tempered distributions via
duality:

(Fu, ϕ) = (u,Fϕ).

The inversion Fourier transform extends in the same way (and it is still the inverse), and
these maps are continuous in the weak∗ topology.

Example:

(Fδ, ϕ) = (δ,Fϕ) = ϕ̂(0) = (2π)−n/2
∫
ϕ(x) dx = ((2π)−n/2, ϕ) =⇒ δ̂ = (2π)−n/2.

Then, via the Fourier inversion formula,

F1 = (2π)n/2δ.

More generally,

(Feiλx, ϕ) = (eiλx, ϕ̂) =

∫
eiλxϕ̂(x) dx = (2π)n/2F−1(ϕ̂)(λ) = (2π)n/2ϕ(λ).

So,
Feiλx(ξ) = (2π)n/2δ(ξ − λ).
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4 Schwartz Kernels and Sobolev Spaces I

If we take a smooth cut-off function, then it is easy to see that

χ(ε·)ϕ→ ϕ

as ε→ 0 in S, giving density of C∞c in S. By duality, one can check that

χ(ε·)u→ u

in S ′ for u ∈ S ′. Of course, this tells us something about the Fourier transform, as now

F−1χ(ε·)Fu→ u

in S ′ by continuity of F on S ′. To check that this makes sense,

u ∈ S ′ =⇒ Fu ∈ S ′ =⇒ χ(ε·)Fu ∈ S ′ =⇒ F−1χ(ε·)Fu ∈ S ′.

In particular, χ(ε·)Fu is a compactly-supported tempered distribution. Recall that a distri-
bution is compactly supported if its support is compact, where the support of a distribution
is defined as the complement of the union of all open sets on which the distribution vanishes
where a distribution vanishes on an open set if its action on all functions supported on that
set is zero. That is, a point is in the support if the distribution is not the zero distribution
when acting on test functions supported on any neighborhood of the point. We call

E ′ = {u ∈ S ′ : supp u is compact}.

In fact, we can pair with any C∞ function (it is actually the dual of C∞). That is, E ′ = (C∞)∗,
where C∞ is endowed with the Frechét topology generated by the semi-norms

pR,k(u) = sup
|x|≤R

k∑
|α|=1

|Dαu|.

For f ∈ C∞, then we define u ∈ E ′ via the pairing

(u, f) = (u, χf),

where χ is a smooth cut-off that is 1 on supp u. This definition is independent of the choice
of cut-off, since all χf agree on supp u. This actually allows us to extend u ∈ S to a linear
functional on C∞. Since E ′ ⊂ S ′, we can take the Fourier transform of elements of E ′. We
can actually say more.

Lemma 4.1. If u ∈ E ′, then we can make sense of the Fourier transform as a function:

Fu(ξ) = (u, (2π)−n/2e−iξx) = (2π)−n/2(u, χ(x)e−ixξ) ∈ C∞(Rn).

In fact, this is analytic, and it extends to an entire function on Cn with an exponential
bound (see the Paley-Wiener-Schwartz theorem).
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Corollary 4.2.
F : E ′ → C∞

So, F−1χ(ε·)Fu → u, as discussed earlier, and the left is C∞. Throwing in another
cut-off, we get that

χ(ε′·)F−1χ(ε·)Fu→ u

in S ′ as ε, ε′ → 0. Hence, C∞c is dense in S ′. Since C∞c ⊂ S, this tells us that S is dense in S ′.
This, in turn, implies that the extension of operations from S to S ′ is unique. This can also
tell us, for example, that the Fourier transform of an L1 function f defined by integration is
the same as when we consider f as a distribution Tf .

Back to PDE’s: Consider {
(iDt −∆)u = 0

u(0, x) = f

In the Schwartz space, we have the solution

u = F−1e−t|ξ|
2Ff.

This makes sense now if f ∈ S ′. Indeed, f ∈ S ′ =⇒ Ff ∈ S ′, and the growth of the
exponential and its derivatives guarantees that its product with Ff is tempered, then the
inverse transform continues to keep us in the space. We’d like to understand this operator
better. Define the heat propagator

et∆ : f 7→ F−1e−t|ξ|
2Ff.

To understand this, we need to understand the inverse Fourier transform of a product.

Definition 4.3. If ϕ, ψ ∈ S, then we define their convolution as

(ϕ ∗ ψ)(x) =

∫
ϕ(x− y)ψ(y) dy.

This has a nice physical interpretation as a moving average of the two functions. It is a
bilinear, symmetric operator S × S → S. It can be extended continuous to S × S ′ → S ′, by
duality (in fact, one can do it again to E ′ × S ′ → S ′). Typically, one defines (ϕ ∗ u, ψ) =
(u, ϕ̃ ∗ ψ), where ϕ̃(x) = ϕ(−x). In particular,

(ϕ ∗ u, ψ) =

∫
(u, ϕ(x− ·))ψ(x) dx.

For symmetry, we merely record

Lemma 4.4. ϕ ∗ ψ = ψ ∗ ϕ

To prove this, simply change variables. A quick application of Fubini yields the key
property of convolution.

Lemma 4.5. F(ϕ ∗ ψ) = (2π)n/2(Fϕ)(Fψ)
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Hence, we can write
et∆f = F−1e−t|ξ|

2Ff = K ∗ f,

where
K = (2π)−n/2F−1e−t|ξ|

2

.

We call K is the heat kernel. In particular,

K(x, t) = (4πt)−n/2e−|x|
2/4t =⇒ et∆f =

∫
(4πt)−n/2e−|x−y|

2/4tf(y) dy,

for a function f . Many answers in PDE’s have solutions in this form. So, our solution has
the form

et∆f =

∫
K(x− y)f(y) dy

In greater generality, we may have a solution∫
K(x, y)f(y) dy,

where K is a function on R2n. For example, if K ∈ L2(R2n), then this gives an operator on
L2 functions, which is an example of a Hilbert-Schmidt operator (this is actually exhaustive,
which is the content of the so-called Hilbert-Schmidt kernel theorem).

Now, let’s say K ∈ S ′(R2n). Define

TK(ϕ) = “

∫
K(x, y)ϕ(y) dy”

by
(TKϕ, ψ)Rn = (K,ψ ⊗ ϕ), (ψ ⊗ ϕ)(x, y) = ϕ(x)ψ(y).

Note that this is consistent with what would happen if K were some nice function.
So, for each K ∈ S ′(R2n) defines a continuous, linear operator TK : S(Rn) → S ′(Rn).

This turns out to be exhaustive.

Theorem 4.6 (Schwartz Kernel Theorem). Let T : S(Rn) → S ′(Rn). If T is linear and
continuous, then there exists K ∈ S ′(R2n) so that T = TK . i.e.

“Tϕ(x) =

∫
K(x, y)ϕ(y) dy”.

We often do not distinguish between an operator and its Schwartz kernel, since they are
in one-to-one correspondence. The proof of this result is quite non-trivial, and we will omit
it.

Now, we move on to a discussion on Sobolev spaces. We are especially interested in
L2-based Sobolev spaces.

Definition 4.7. We define the Sobolev space Hk(Rn) for k ∈ N ∪ {0} as

Hk(Rn) = {u ∈ S ′(Rn) : Dαu ∈ L2 ∀|α| ≤ k}.
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When we say Dαu ∈ L2, we mean that the distributional pairing is represented by
integration against and L2 function. Note that

u ∈ Hk ⇐⇒ û ∈ L2 and ξαû ∈ L2 ∀ |α| ≤ k ⇐⇒ 〈ξ〉k û ∈ L2,

and the last statement makes sense for any s ∈ R.

Definition 4.8. We define the Sobolev space Hs(Rn) for s ∈ R as

Hs(Rn) = {u ∈ S ′(Rn) : 〈ξ〉s û ∈ L2}.

We can see that s > 0 =⇒ Hs ⊂ L2 = H0, s < 0 =⇒ L2 ⊂ Hs, which further implies
that Hs ⊂ H t for all s > t (this subset notation should be understood as meaning that the
inclusion map is injective and continuous) These are all Hilbert spaces, as they are L2-based.
They are endowed with the inner product

〈u, v〉Hs =

∫
〈ξ〉2s û(ξ)v̂(ξ) dξ.

We also remark that for s > 2n, Hs forms a Banach algebra.
Consider the Fourier multiplier

Λs = (1−∆)s/2,

which acts via the Fourier multiplier functional calculus as

Λsf = F−1
(
〈ξ〉s f̂(ξ)

)
.

Since F is an isometric isomorphism, one could equivalently define Hs as the tempered distri-
butions u so that Λsu ∈ L2, or Hs = Λ−sL

2. In particular, this is an isometric isomorphism

Λs : Hs → L2,

and
Λs : H t → H t−s

in the same manner.

One can readily prove the following proposition.

Proposition 4.9. For all s ∈ R, Dα : Hs → Hs−|α|

Furthermore,

Lemma 4.10. Suppose that f ∈ H1, so that ∂xjf ∈ L2 for each j (this denotes the distri-
butional derivative). Then,

lim
k→0

f(x+ kej)− f(x)

k
→ ∂xjf(x)

in L2.
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So, the difference quotients converge in L2 to the distributional derivative. Next, we
record a result on duality.

Proposition 4.11. (Hs)∗ = H−s, where the dual is taken with respect to the L2 inner
product. Hence, any α : Hs → C continuous and linear has the form

α(u) = 〈u, v〉∗ := 〈û, v̂〉 ,

for a unique v ∈ H−s.

Note that the dual is taken with respect to L2 (the above might have set off alarm bells,
as Hilbert spaces are reflexive with respect to their inner product).

Remark 4.12. Let me elaborate on this pairing. On S, this pairing is the same as the
standard L2 pairing via Plancherel. For u, v ∈ S, we apply Cauchy-Schwarz to get

| 〈u, v〉 | = |〈Λsu,Λ−sv〉| ≤ ‖u‖Hs ‖v‖H−s .

So, this is a continuous bilinear form which extends by density to Hs and H−s. I will not
show that this pairing gives an isometric isomorphism between H−s and (Hs)∗ via the map
v 7→ 〈·, v〉∗; see page 122 of Friedlander and Joshi or page 302 in Folland.

It’s nice to know where these Sobolev spaces relate to more classical spaces of functions,
especially those which record regularity.

Proposition 4.13 (Sobolev Embedding). Hs(Rn) ↪→ Ck(Rn) if s > n/2 + k.

For example, Hs ↪→ C0 if s > n/2.

Proof. Both are Banach spaces, so it suffices to show that the inclusion map is continuous
on a dense subset. We only do k = 0. It will suffice to show that there exists C ∈ R+ so that
for all ϕ ∈ S,

sup |ϕ| ≤ C ‖ϕ‖Hs .

Write

ϕ(x) = (2π)−n/2
∫
eixξϕ̂(ξ) dξ = (2π)−n/2

∫
(〈ξ〉−s eixξ)(〈ξ〉s ϕ̂(ξ) dξ.

Applying the Cauchy-Schwarz inequality,

sup |ϕ| ≤ C ‖ϕ‖s .

We used that
s > n/2 =⇒ 〈ξ〉−s eixξ ∈ L2.

Remark 4.14. I prefer the following proof:

We start with k = 0. For any f ∈ Hs, with s > n/2, we note that

‖f̂‖L1 . ‖f‖Hs .
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Since f̂ ∈ L1, the Fourier inversion theorem and Riemann-Lebesgue lemma tell us that
f ∈ C0

0 , with
‖f‖L∞ . ‖f‖Hs .

Now, suppose that f ∈ Hs and s > k + n/2, k ∈ N. Given |α| ≤ k, we know that
Dα : Hs → Hs−|α|. Applying the k = 0 case to Dαf, we have that Dαf ∈ C0

0 and

‖Dαf‖L∞ . ‖f‖Hs−|α| . ‖f‖Hs .

We can see the continuity in the following way, as well. By density, there exists a sequence
of Schwartz functions {ϕj} so that ϕj → Dαf in Hs−|α|. Since ϕj ∈ Hs−|α|. By the above
inequality, we have that ϕj → Dαf uniformly, which yields continuity.

Technically, this only shows that the weak derivatives of f are continuous. General weak
derivative theory tells us that we’re good (e.g. if Djf = u and u is continuous, then f is a.e.
C1), but we can also note the following:

By density, there exists a sequence of Schwartz function fj so that fj → f in Hs. By the
estimate, fj → g in Ck, due to completeness. In particular, fj → f in L2, and fj → g in C0

0 ;
thus, ∫

fjϕ→
∫
fϕ, ∀ϕ ∈ S∫

fjϕ→
∫
gϕ, ∀ϕ ∈ S

implying that f = g.

Note that the proof actually gave us an embedding into Ck
0 .

Corollary 4.15. ⋂
s∈R

Hs ⊂ C∞,

and ⋃
s∈R

Hs ⊃ E ′.

Another important embedding is the compact embedding of higher-order Sobolev spaces
into lower-order ones.

Theorem 4.16 (Rellich-Kondrachov). Take s > t, K compact, and consider

S = {u ∈ Hs(Rn) : supp u ⊂ K, ‖u‖s ≤ 1}.

Then, S is compact in H t.

Remark 4.17. The same is true. for 〈x〉−αHs ↪→ 〈x〉−βH t for α > β and s > t. This is
nice, as it is expressed in terms of both decay and regularity.

We will prove this next time, but let’s talk about it a bit. We know that the closed
unit ball is never compact in an infinite-dimensional Banach space. There are two primary
obstructions to compactness in L2: functions marching off to infinity in space or in frequency.
If we support things in space and control the high frequencies in some way (better than L2

in frequency), then we get compactness in a weaker space.
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5 Sobolev Spaces II: Proof of Rellich’s Theorem, Com-

plex Interpolation, and Applications

To start off, we proceed with the proof of the Rellich-Kondrachov theorem.

Proof of Theorem 4.16. Let uj ∈ S be bounded in H t. WLOG, take t = 0 (otherwise, use
the Λs action). We want a subsequence converging in L2. Passing to a subsequence (by the
Banach-Alaoglu theorem) uj → u ∈ S weakly in Hs. We want to show that uj → u (i.e.
strongly).

Note that

w ∈ S ⊂ E ′ =⇒ ŵ(ξ) = (w, (2π)−1/2eixξ) = (w, (2π)−1/2χeixξ), χ ∈ C∞c , χ ≡ 1 on supp w.

Then,
|ŵ(ξ)| ≤ C ‖w‖Hs

∥∥χei(·)ξ∥∥
H−s

= C
∥∥χei(·)ξ∥∥

H−s
,

and ∥∥χei(·)ξ∥∥
H−s

=

∫
|χ̂eixξ(η)|2〈η〉−2s dη =

∫
|χ̂(η − ξ)|2〈η〉−2s dη

= O(〈ξ〉−2s).

Thus,
|ŵ(ξ)| ≤ C 〈ξ〉−s .

If we apply this to uj, then we get that ûj is uniformly bounded on compact subsets of Rn.
One can do the same for partial derivatives in ξ, in which case the Arzela-Ascoli theorem
guarantees the existence of a locally uniformly convergence subsequence. Since

uj
w
⇀ u =⇒ (uj, e

ixξ)→ (u, eixξ) =⇒ ûj(ξ)→ û(ξ) ∀ξ

passing to our subsequence gives that

ûj → û uniformly.

Fix ε > 0. Then, there exists R > 0 such that

〈R〉−2s <
ε

4
.

By Plancherel,

‖uj − u‖2
L2 =

∫
|ûj(ξ)− û(ξ)|2 dξ =

∫
|ξ|>R

|ûj(ξ)− û(ξ)|2 dξ +

∫
|ξ|≤R

|ûj(ξ)− û(ξ)|2 dξ

=: I1 + I2.

Now,

I2 =

∫
|ξ|>R

|ûj − û|2 〈ξ〉−2s 〈ξ〉2s dξ ≤ 〈R〉−2s ‖uj − u‖2
Hs <

ε

4
‖uj − u‖2

Hs ≤
ε

2
.

15



For I2, we simply use the established uniform convergence to get that there exists N ∈ N
such that

I2 <
ε

2
.

Thus, uj → u in L2.

We will change gears a bit. Recall that if

p(ξ) =
∑
|α|≤m

aαξ
α, aα ∈ C,

then
p(D) : Hs → Hs−m

for all s ∈ R. We are interested in studying the action of variable-coefficient differential
operators

P ∈ Diffm(Rn), P =
∑
|α|≤m

aα(x)Dα, aα ∈ C∞b (Rn).

In particular, we pose the following question: Is it still true that

P : Hs → Hs−m?

If P is the map ϕ 7→ aϕ, with a ∈ C∞b , then P : Hs → Hs for any s ∈ N. For example,
if s = 1, and u ∈ H1, then

‖au‖H1 ≤ ‖au‖L2 + ‖∇(au)‖L2 . ‖u‖L2 + ‖∇u‖L2 + ‖u‖L2 <∞.

The argument is similar for higher natural numbers (induct). Consider P to be given in the
form in our stated question. Note that aα(x)Dα = Maα ◦ Dα and Dα : Hs → Hs−|α| for
all s ∈ R. This coupled with the work for Maα gives the result for natural s, and we can
see that, for general s ∈ R, our question boils down to showing that Ma : Hs → Hs for all
s ∈ R. We will show this using the method of complex interpolation.

We will start with s ∈ [0, 1]. One can natural extend the work to the non-negative reals,
then use a duality argument to extend to s ∈ R. We already know that result when s = 0, 1.
Notice that it will suffice to prove that Ts := ΛsMaΛ−s : L2 → L2 for s ∈ (0, 1).

Key idea: Tz makes sense for all z ∈ C and is analytic in z.

Since ‖Tz‖ = sup‖ψ1‖=‖ψ2‖=1 | 〈Tzψ1, ψ2〉 | for ψ1, ψ2 ∈ L2 and S is dense in L2, it will
suffice to show that for all ψ1, ψ2 ∈ S

| 〈Tzψ1, ψ2〉 | . ‖ψ1‖ ‖ψ2‖ ,

where the 〈·, ·〉 and ‖·‖ denote the L2 inner product and norm, respectively. We already have
the result if Rez = 0, 1, since Λx+iy = ΛxΛiy, and Λiy is unitary on L2. To ease notation, let
us call

f = fψ1,ψ2 = 〈Tzψ1, ψ2〉 .
If we call Ω = {z ∈ C : Rez ∈ [0, 1]}, then we already know that |f(z)| . ‖ψ1‖ ‖ψ2‖ for
z ∈ ∂Ω. So, f is scalar-valued and holomorphic on Ω (in fact, it is entire).
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Theorem 5.1 (Hadamard 3-lines theorem). Suppose that f is analytic in int Ω and both
continuous and bounded on Ω. Set M(x) = supy∈R |f(x + iy)|. Then, logM(x) is convex.
Equivalently,

M(x) ≤ (M(0))1−x(M(1))x.

Proof. Set
g(z) = f(z)((M(0))−1+z(M(1))−z).

We must show that |g(z)| ≤ 1, and we already know that |g(iy)| ≤ 1 and |g(1 + iy)| ≤ 1.
For each n ∈ N, set

gn(z) = g(z)e(z2−1)/n.

Since |gn(z)| = |g(z)|e(x2−y2−1)/n, it follows that |gn(z)| → 0 as |z| → ∞ for all z ∈ ∂Ω. By
the maximum modulus principle,

sup
z∈Ω
|gn(z)| = sup

z∈∂Ω
|gn(z)| ≤ sup

z∈∂Ω
|g(z)| ≤ 1.

Since gn(z)→ g(z) as n→∞ for all z ∈ Ω, it follows that

|g(z)| ≤ 1, z ∈ Ω.

In order to apply this to f , we must check that f is bounded on ∂Ω. But, this is easy:
fix z ∈ ∂Ω, and notice that

|f(z)| ≤ ‖Tzψ1‖ ‖ψ2‖ = ‖ΛzMaΛ−zψ1‖ ‖ψ2‖

If Rez = 0, then
|f(z)| ≤ ‖MaΛ0ψ1‖ ‖ψ2‖ ,

and if Rez = 1,
|f(z)| ≤ ‖MaΛ−1ψ1‖H1 ‖ψ2‖ .

Recall that Ma : Hs → Hs if s = 0 and or s = 1. If Rez = 0, then we use that s = 0 case to
get that

|f(z)| ≤ C0 ‖Λ0ψ1‖ ‖ψ2‖ = C0 ‖ψ1‖ ‖ψ2‖ ,

and if Rez = 1, then we use the s = 1 case to get that

|f(z)| ≤ C1 ‖Λ−1ψ1‖H1 ‖ψ2‖ = C1 ‖ψ1‖ ‖ψ2‖ .

By Theorem 5.1, we conclude via the least upper bound property that

|f(x+ iy)| ≤ C1−x
0 Cx

1 ‖ψ1‖ ‖ψ2‖

for all x ∈ [0, 1]. In particular,
|f(s)| ≤ C ‖ψ1‖ ‖ψ2‖

for all s ∈ [0, 1].
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For s ∈ R+, one can employ the same type of argument (using boundedness on Hk for
an appropriate k ∈ N). If −s ≥ 0 and u ∈ H−s, then

‖Mau‖−s = sup
v∈Hs

‖v‖s=1

| 〈Mau, v〉L2 | = sup
v∈Hs

‖v‖s=1

| 〈u,Mav〉L2 | . ‖u‖H−s ‖v‖Hs = ‖u‖H−s .

Thus, we have answered our question in the affirmative: variable-coefficient differentiable
operators of order m (with smooth coefficients bounded in all derivatives) send Hs to Hs−m,
just as in the constant coefficient case. We will record this in the following theorem.

Theorem 5.2. Let P ∈ Diffm(Rn) be given by P =
∑
|α|≤m

aα(x)Dα, where aα ∈ C∞b (Rn).

Then,
P : Hs → Hs−m.

Another application of complex interpolation is the following: recall that the Fourier
transform F sends L2 to L2 and L1 to L∞. Using complex interpolation, one can prove the
result for all p in between.

Theorem 5.3 (Hausdorff-Young). For any p ∈ [1, 2],

F : Lp(Rn)→ Lp
′
(Rn),

1

p
+

1

p′
= 1.

For a final application, we claim that Sobolev spaces are invariant under coordinate
changes. Let Φ : Rn → Rn be a diffeomorphism, and let us say that Φ ≡ 1 outside of a ball
of radius R. If u ∈ L2, then

‖Φ∗u‖2
L2 =

∫
|u(Φ(x))|2 dx =

∫
|u(y)|2| detDΦ−1(y)| dy <∞,

since (DΦ−1)ij ∈ C∞b . If u ∈ H1, then we note that∫ ∣∣∣∣∂(u ◦ Φ)

∂xj

∣∣∣∣2 dx =

∫ n∑
k=1

∣∣∣∣ ∂u∂yk ∂Φk

∂xj

∣∣∣∣2 detDΦ−1(y)| dy <∞,

since
∂Φk

∂xj
∈ L∞.

Thus, Φ∗ : L2 → L2 and Φ∗ : H1 → H1. Using complex interpolation and duality, it follows
that Φ∗ : Hs → Hs for all s ∈ R. This is the content of the following theorem.

Theorem 5.4. Let Φ : Rn → Rn be a diffeomorphism, and suppose Φ ≡ 1 outside of a ball
of radius R. Then,

Φ∗ : Hs → Hs.
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